DNS at NLnet Labs

Matthijs Mekking
Topics

• NLnet Labs
• DNS
• DNSSEC
• Recent events
NLnet

• Internet Provider until 1997
 – The first internet backbone in Holland
• Funding research and software projects that aid the Internet community
 – 1999, NLnet Labs
NLnet Labs

- Founded in 1999, DNSSEC
- DNS, DNSSEC, IPv6, routing
- Software development
 - NSD, Unbound, Idns, OpenDNSSEC
 - C
- Work on open standards (IETF)
 - RFCs 3750, 3904, 4641, 5702, ...
- Education
 - DNS courses, student projects
IETF

• Internet Engineering Task Force
• “The goal of the IETF is to make the Internet work better”
• Technical documents (RFC)
• http://www.ietf.org
Topics

• NLnet Labs
• DNS
• DNSSEC
• Recent events
What is DNS?

• Domain Name System
• We want to refer machines by name
 – devnology.nl instead of 62.212.74.133
• In the beginning there was HOSTS.TXT...
• ... but then the Internet grew
• Problems with traffic and load, name collisions
What is DNS?

• DNS was created in 1983 by Paul Mockapetris
 - RFCs 822 and 823
• IETF Full Standard in 1987
 - RFCs 1034 and 1035
• Enhanced, updated, modified
 - RFCs 1123, 1982, 2181, 2308, 2671 (EDNS0), 2672, 3425, 4343, 4592, 5001 (NSID), 5452, 5936 and more
DNS at IETF

• Internet Engineering Task Force
• "The goal of the IETF is to make the Internet work better"

Technical documents (RFC)

http://www.ietf.org
DNS Features

- A lookup mechanism for translating objects into other objects
- A globally, distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
 - Name space
 - Servers making the name space available
 - Clients who perform the name resolution
Name space
Name space

- Database of DNS Resource Records

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLASS</th>
<th>TTL</th>
<th>RDLEN</th>
<th>RDATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>devnology.nl</td>
<td>A</td>
<td>IN</td>
<td>3600</td>
<td>1</td>
<td>RDATA_A</td>
</tr>
<tr>
<td>devnology.nl</td>
<td>NS</td>
<td>IN</td>
<td>3600</td>
<td>1</td>
<td>RDATA_NS</td>
</tr>
</tbody>
</table>

- Different RDATA format

Domain name
ns1.transip.net

IPv4
62.212.74.133
Resource records

- SOA: Source of Authority
- A: IPv4 Address
- AAAA: IPv6 Address
- MX: Mail Server
- NS: Name Server (delegation)
- PTR: Reverse Lookup
- TXT: Arbitrary Text
- ...
Example zonefile

devnology.nl. IN SOA (
ns0.transip.net. hostmaster.transip.nl.
2010032002 14400 1800 604800 86400)
devnology.nl. IN NS ns0.transip.net.
devnology.nl. IN NS ns1.transip.net.
devnology.nl. IN NS ns2.transip.net.
devnology.nl. IN MX 10 ASPMX.L.GOOGLE.COM.
devnology.nl. IN MX 30 ASPMX3.GOOGLEMAIL.COM.
...
devnology.nl. IN TXT ("v=spf1 ip4:62.212.74.133 a mx
a:devnology.nl include:aspmx.googlemail.com ~all")
devnology.nl. IN A 62.212.74.133
www.devnology.nl. IN CNAME devnology.nl.

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs
Devnology, NL, 4 August 2010
Reverse zone

74.212.62.in-addr.arpa. IN SOA (ns1.leaseweb.nl. postmaster.leaseweb.nl. 2002111068 14400 7200 604800 86400)
74.212.62.in-addr.arpa. IN NS ns2.leaseweb.nl.
74.212.62.in-addr.arpa. IN NS ns3.leaseweb.org.
74.212.62.in-addr.arpa. IN NS ns1.leaseweb.nl.

1.74.212.62.in-addr.arpa. IN PTR hosted-by.leaseweb.com.
2.74.212.62.in-addr.arpa. IN PTR tiltbox.com.
...
133.74.212.62.in-addr.arpa. IN PTR devnology.nl.
...
Name resolution
Name resolution

;; QUESTION SECTION:
;www.devnology.nl. IN A

;; AUTHORITY SECTION:
nl. 172800 IN NS ns1.nic.nl.
nl. 172800 IN NS ns-nl.nic.fr.

;; ADDITIONAL SECTION:
ns1.nic.nl. 172800 IN A 193.176.144.2
ns-nl.nic.fr. 172800 IN A 192.93.0.4
ns1.nic.nl. 172800 IN AAAA 2a00:d78:0:102:193:176:144:2
Name resolution

;; QUESTION SECTION:
;www.devnology.nl. IN A

;; AUTHORITY SECTION:
devnology.nl. 7200 IN NS ns0.transip.net.
devnology.nl. 7200 IN NS ns1.transip.net.
devnology.nl. 7200 IN NS ns2.transip.net.

;; ADDITIONAL SECTION:

• Additional section is empty, need to query for ns{0,1,2}.transip.net
Name resolution

;; QUESTION SECTION:
www.devnology.nl. IN A

;; ANSWER SECTION:
www.devnology.nl. 86400 IN CNAME devnology.nl.
devnology.nl. 86400 IN A 62.212.74.133
Reverse zone

; <<< DiG 9.7.0-P1 <<< -x 62.212.74.133
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id:23068
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1,
;; ADDITIONAL: 0

;; QUESTION SECTION:
;133.74.212.62.in-addr.arpa. IN PTR

;; AUTHORITY SECTION:
74.212.62.in-addr.arpa. 77364 IN SOA
ns1.leaseweb.nl. postmaster.leaseweb.nl. 2002111068 14400
7200 604800 86400

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs
DNS on the wire

<table>
<thead>
<tr>
<th>QR</th>
<th>Opcode</th>
<th>AA</th>
<th>TC</th>
<th>RD</th>
<th>RA</th>
<th>Z</th>
<th>RCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QDCOUNT</th>
<th>ANCOUNT</th>
<th>NSCOUNT</th>
<th>ARCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Authoritative NS

• Makes the name space available
 - Zone files vs Database backends
 - Master vs. Slaves
 - Zone transfers
 • Incremental zone transfers – RFC 1995
 • DNS NOTIFY – RFC 1996
 • TSIG and SIG(0) – RFC 2845 and 2931
 - Dynamic updates (DHCP) – RFC 2136
Topics

• NLnet Labs
• DNS
• DNSSEC
• Recent events
What's the threat?

- DNS Threat Analysis (RFC 3833)
 - Packet interception
 - Confidentiality, Integrity, Availability
 - ID Guessing & Query prediction
 - devnology.nl IN A 6.6.6.6
 - Name chaining
 - devnology.nl IN NS ns0.evilguy.com
 - Denial of service (flooding name servers)
 - Slave servers
What's the threat?

• Confidentiality?
 - DNS is public data
 - IPSec

• Availability?
 - As with any network service
 - DNSSEC does not prevent Denial of Service (in fact it makes it worse)

• Integrity
 - DNSSEC will ensure integrity
Cache poisoning

• Provide false data to a caching name server (query prediction, id guessing)
• Based on a flaw in the DNS, first answer is the correct one, ignore duplicates
Cache poisoning

• How does a resolver know a response is expected?
 – Arrives on the same UDP port
 – Question section matches
 – Query ID matches
 – The Authority and Additional sections represent names that are within the same domain as the question: this is known as "bailiwick checking".
Kaminsky attack

- Based on ID guessing (16 bits)
- Prerequisite is that the data is not in the cache
- High TTL is sort of defense mechanism (but not against the Kaminsky attack)
Real response

;; QUESTION SECTION:
;111.nlnetlabs.nl. IN NS

;; AUTHORITY SECTION:
nlnetlabs.nl. 3600 IN SOA
open.nlnetlabs.nl. hostmaster.nlnetlabs.nl. 2010080100
28800 7200 604800 3600
Real response

;;; QUESTION SECTION:
;www.nlnetlabs.nl. IN A

;;; ANSWER SECTION:
www.nlnetlabs.nl. 9888 IN A 213.154.224.1

;;; AUTHORITY SECTION:
nlnetlabs.nl. 10117 IN NS open.nlnetlabs.nl.
nlnetlabs.nl. 10117 IN NS ns3.domain-registry.nl.

;;; ADDITIONAL SECTION:
open.nlnetlabs.nl. 528 IN A 213.154.224.1
open.nlnetlabs.nl. 9162 IN AAAA 2001:7b8:206:1::53
Fake response

;; QUESTION SECTION:
;111.nlnetlabs.nl. IN A

;; ANSWER SECTION:
111.nlnetlabs.nl. 9888 IN A 6.6.6.1

;; AUTHORITY SECTION:
nlnetlabs.nl. 10117 IN NS ns1.evilguy.com.
nlnetlabs.nl. 10117 IN NS ns2.transip.net.

;; ADDITIONAL SECTION:
open.nlnetlabs.nl. 528 IN A 213.154.224.1
open.nlnetlabs.nl. 9162 IN AAAA 2001:7b8:206:1::53

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs
Kaminsky attack

1.foo.nl?

foo.nl SOA

- Invalid ID
- Duplicate

1.foo.nl!
6.6.6.1

1.foo.nl!
NXDOMAIN

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs
Kaminsky attack

9.foo.nl?

foo.nl SOA
9.foo.nl A 6.6.6.1
foo.nl NS ns.evil

9.foo.nl!
6.6.6.1

9.foo.nl!
NXDOMAIN
- Duplicate

Devnology, NL, 4 August 2010

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs
Kaminsky attack

• Solution 1: add more randomness
 - UDP source port randomization
 - \(2^{16} \times 2^{11} = 2^{27} = 134\) million
 - Short term solution

• Solution 2: DNSSEC
DNSSEC

- DNS Security Extensions
 - RFC 4034, 4035
- Data origin authentication, data integrity
- Public key cryptography
 - The DNSKEY Record
- Adds signatures to responses
 - The RRSIG Record
DNSSEC RRs

DNSSEC Resource Records

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLASS</th>
<th>TTL</th>
<th>RDLEN</th>
<th>RDATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>devnology.nl</td>
<td>DNSKEY</td>
<td>IN</td>
<td>3600</td>
<td>1</td>
<td>RDATA_DNSKEY</td>
</tr>
<tr>
<td>devnology.nl</td>
<td>RRSIG</td>
<td>IN</td>
<td>3600</td>
<td>1</td>
<td>RDATA_RRSIG</td>
</tr>
</tbody>
</table>

ORIG TYPE

<table>
<thead>
<tr>
<th>ORIG TYPE</th>
<th>ALGO.</th>
<th>LABELS</th>
<th>ORIG TTL</th>
<th>SIG EXPIRE</th>
<th>SIG START</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA</td>
<td>RSASHA1</td>
<td>2</td>
<td>3600</td>
<td>01/09/2010</td>
<td>01/08/2010</td>
</tr>
</tbody>
</table>

KEY TAG

- **KEY TAG**: 12345
- **SIGNER NAME**: devnology.nl
- **SIGNATURE**: AwEE3dF0...

FLAGS

- **FLAGS**: 257
- **PROTOCOL**: 3
- **ALGORITHM**: RSASHA1
- **PUBLIC KEY**: AQPSKmy...
DNSSEC RRs

- DNSKEY: Public key
- RRSIG: Signature
- DS: Delegation Signer
 - Provides a secure path at the delegation (between parent zone and child zone)
- NSEC: Denial of Existence
 - broodjeaap.nl is proven not to exist
- NSEC3: Hashed Denial of Existence
DNSSEC RRs

devnology.nl. IN RRSIG SOA 5 2 3600 (20100831131949 20100803131949 46792 devnology.nl. RYY.../yik=)

... devnology.nl. IN DNSKEY 257 3 5 AwE...htWV
devnology.nl. IN RRSIG DNSKEY 5 2 3600 ...
devnology.nl. IN NSEC www.devnology.nl. A NS SOA MX TXT (RRSIG NSEC DNSKEY)
devnology.nl. IN RRSIG NSEC 5 2 86400 ...
www.devnology.nl. IN CNAME devnology.nl.
www.devnology.nl. IN RRSIG CNAME 5 3 360 ...
www.devnology.nl. IN NSEC devnology.nl. CNAME RRSIG NSEC
www.devnology.nl. IN RRSIG NSEC 5 3 86400 ...

http://www.nlnetlabs.nl/
© 2010 Stichting NLnet Labs

development, NL, 4 August 2010
DNSSEC query

;; ANSWER SECTION:
devnology.nl. 3600 IN A 62.212.74.133
devnology.nl. 3600 IN RRSIG A 5 2 3600 20100831131949 20100803131949 46792 devnology.nl. TO+EysNigcB/rXBZ89mv310KZnX3/2xp6Cl0r96cUg10qNXU11RCoHQteeW705AFtqV0e8WK7QMVFSpu0TRTnXNwcEDIP/qvzBu7bMSjCM7XejDg1ff+WgfJ5Ra4C1Dvryq4Rj03kKzQPSBiE9DiK03zcQgUCEVEdJ03YrY+NbY= ;{id = 46792}

;; AUTHORITY SECTION:
devnology.nl. 3600 IN NS ns0.transip.net.
devnology.nl. 3600 IN NS ns1.transip.net.
devnology.nl. 3600 IN RRSIG NS 5 2 3600 20100831131949 20100803131949 46792 devnology.nl. LTqB1PmqOC3YaBYedq6sHM3tssVwtAx8M106I2y0NynCcY2oRyRK4Mti19eJ/0H98J0en0j6u9KQtzEUGXb0Ik+MLIBntNwxF1CTBEyvmJp9U+9E6Rt0tv1Np1cH3Lsf+UXaXajPxkeFJpuE/Q6YQsNwP2zqtGkQl/I09XPWvU= ;{id = 46792}
DNSSEC Status

• A response can now be
 - Secure
 - Insecure
 - Bogus
 - Indeterminate

• Up to local policy how to handle these states
How to validate?

- Resolver needs to know the public key
 - Trust Anchor
- Key distribution is difficult
- Solution: Sign the delegation
 - The DS Record
 - DNS Root Trust Anchor: “one key to rule them all”
- Luckily, the root has been signed:)
 - As of 15 July 2010
DNS Root Trust Anchor

. IN DNSKEY 257 3 8
AwEAAagAIK1VZrpC6Ia7gEzahOR+9W29euxhJhV
VLOyQbSEW008gcCjFFVQUTf6v58fLjwBd0YI0Ez
rAcQqBGCzh/RStIo08g0NfnfL2MTJRkxoXbfDaU
eVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkJ
f5/Efucp2gaDX6RS6CXpoY68LsvPVjR0ZSwzz1a
pAzvN9dlzEheX7ICJBBtuA6G3LQpzW5h0A2hzCT
MjJPJ8LbqF6dsV6DoBQzgu10sGIcGOY170yQdXf
Z57relSQageu+ipAdTTJ25AsRTAoub80NGcLmqr
AmRLKBP1dfwhYB4N7knNnulqQxA+Uk1ihzθ=
{id = 19036 (ksk), size = 2048b}
DNSSEC RRs

• In the root zone:
 - dk. IN DS 26887 8 2 A1AB8546B80E438A7DFE0EC559A7088EC5AED3C4E0D26B1B60ED3735F853DFD7
 - dk. IN RRSIG DS 8 1 172800 20100810000000 20100802230000 41248 . o23Xc...

• Points to the DNSKEY in the dk zone:
 - dk. IN DNSKEY 256 3 8 AwEAA... ; keytag=55594
 - dk. IN DNSKEY 257 3 8 AwEAA... ; keytag=26887
 - dk. IN RRSIG DNSKEY 8 1 86400 20100805191323 20100729141045 26887 dk. WLuD3...

• Resolver can now build chain of trust
Name resolution

;dnssec.dk. IN A @k.root-servers.net

;; AUTHORITY SECTION:
dk. 172800 IN NS a.nic.dk.
dk. 172800 IN NS b.nic.dk.
...
dk. 172800 IN DS 26887 8 2 A1AB8546B80E438A7DFE0EC559A7088EC5AED3C4E0D26B1B60ED3735 F853DFD7
dk. 172800 IN RRSIG DS 8 1 172800 20100810000000 20100802230000 41248 . o23Xc... ; signed with root key
;; ADDITIONAL SECTION:
a.nic.dk. 172800 IN A 212.88.78.122
b.nic.dk. 172800 IN A 193.163.102.222
Name resolution

; dnssec.dk. IN A @a.nic.dk

;; AUTHORITY SECTION:
dnssec.dk. IN NS ns1.gratisdns.dk.
dnssec.dk. IN NS ns2.gratisdns.dk.

8afgsvl5sgurhqbipm0fdbvr5jq1frp2.dk. 3600 IN NSEC3 1 1 17
FAC981985022A210 8AFHAQVUPD0DDIRUTFL1NE5QONPO1CJ5 A NS
SOA TXT RRSIG DNSKEY NSEC3PARAM

8afgsvl5sgurhqbipm0fdbvr5jq1frp2.dk. 3600 IN RRSIG NSEC3

isab28efbcpglup6uanh61dnolc8g0tq.dk. 3600 IN NSEC3 1 1 17
FAC981985022A210 ISAH6L4MDDHR8KHCHFHC6SG7N6TG708

isab28efbcpglup6uanh61dnolc8g0tq.dk. 3600 IN RRSIG NSEC3

;; ADDITIONAL SECTION:
ns1.gratisdns.dk. 86400 IN A 109.238.48.13

http://www.nlnetlabs.nl/
Name resolution

; dnssec.dk. IN A @ns1.gratisdns.dk

; ; ANSWER SECTION:
dnssec.dk. 43200 IN A 193.3.157.13

dnssec.dk. 43200 IN RRSIG A 5 2 43200 20100901114809

; ; AUTHORITY SECTION:
dnssec.dk. 43200 IN NS ns4.gratisdns.dk.
dnssec.dk. 43200 IN NS ns3.gratisdns.dk.
dnssec.dk. 43200 IN NS ns5.gratisdns.dk.
dnssec.dk. 43200 IN NS ns2.gratisdns.dk.
dnssec.dk. 43200 IN NS ns1.gratisdns.dk.
dnssec.dk. 43200 IN RRSIG NS 5 2 43200
Name resolution

;; Number of trusted keys: 1
;; Domain:.
[T] . 86400 IN DNSKEY 256 3 8 ;{id = 41248 (zsk), ...}
 . 86400 IN DNSKEY 257 3 8 ;{id = 19036 (ksk), ...}
[T] dk. 172800 IN DS 26887 8 2 a1ab8546b80e438a7dfe0ec559a7088ec5aed3c4e0d26b1b60ed3735f853dfd7
 ;; Domain: dk.
[T] dk. 86400 IN DNSKEY 257 3 8 ;{id = 26887 (ksk), ...}
dk. 86400 IN DNSKEY 256 3 8 ;{id = 55594 (zsk), ...}
 ;; Domain: dnssec.dk.
[S] dnssec.dk. 43200 IN DNSKEY 257 3 5 ;{id = 58693...}
dnssec.dk. 43200 IN DNSKEY 256 3 5 ;{id = 26751...}
[S] dnssec.dk. 43200 IN A 193.3.157.13
Denial of existence

;miss.nlnetlabs.nl. IN A @open.nlnetlabs.nl

;; AUTHORITY SECTION
nlnetlabs.nl. 3473 IN SOA open.nlnetlabs.nl. hostmaster.nlnetlabs.nl. 2010080100 28800 7200 604800 3600
nlnetlabs.nl. 3473 IN RRSIG SOA 5 2 10200 20100829005003
nlnetlabs.nl. 1543 IN NSEC _jabber._tcp.nlnetlabs.nl. A NS SOA MX TXT AAAA NAPTR RRSIG NSEC DNSKEY
nlnetlabs.nl. 1543 IN RRSIG NSEC 5 2 3600 20100829005003
mirre.nlnetlabs.nl. 3596 IN NSEC moby-dick.nlnetlabs.nl. A AAAA RRSIG NSEC
mirre.nlnetlabs.nl. 3596 IN RRSIG NSEC 5 3 3600
NSEC Issues

• More signatures needed
• Zone walking
• Solution: Hashed version of Denial of Existence
 – The NSEC3 Record – RFC 5155
Hashed version

• Simplified

;miss.nlnetlabs.nl. IN A @open.nlnetlabs.nl

h(www.nlnetlabs.nl.) = 11
h(miss.nlnetlabs.nl.) = 12
h(_jabber._tcp.nlnetlabs.nl.) = 13

11.nlnetlabs.nl. 1543 IN NSEC3 13.nlnetlabs.nl. A AAAA
Hashed version

; dnssec.dk. IN DS @a.nic.dk

;; AUTHORITY SECTION:
...
8afgsvl5sgurhqbiɒpm0fdбрv5jq1frp2.dk. 3600 IN NSEC3 1 1 17 FAC981985022A210 8AFHAQVUPD0DDIRUTFL1NE5Q0NPO1CJ5 A NS SOA TXT RRSIG DNSKEY NSEC3PARAM
8afgsvl5sgurhqbiɒpm0fdбрv5jq1frp2.dk. 3600 IN RRSIG NSEC3
isab28efbcp(glup6uanh61dnolc8g0tq.dk. 3600 IN NSEC3 1 1 17 FAC981985022A210 ISAH6L4MDDHLR8KHCHFHC6SG7N6TG708
isab28efbcp(glup6uanh61dnolc8g0tq.dk. 3600 IN RRSIG NSEC3
Operational practices

• RFC 4641
• Re-signing
 – Signatures have a lifetime to prevent replay attacks
 – Signature validity period should be long enough to last the weekend
• Key rollover
 – Crypto analysis
 – Operational practices
Key rollover

• Be aware of DNS caches!
 – Old DNSKEY might still be in the cache
 – Old RRSIGs might still be in the cache
 – Switching without care might take your zone offline

• Be aware of your delegation!
 – DS Record in the parent must match your DNSKEY
 – ZSK / KSK split (Flags: 256 / 257)
ZSK vs KSK

| 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ? | Protocol | Algorithm |

• SEP (Security Entry Point) bit
 - 0: 'ZSK'
 - 1: 'KSK' (Only sign DNSKEY set)

– DS record must match a SEP
Key rollover

• Double sign your zone
 - Until old key expires from the cache
 - Remove old key
 - Drawback: Increased zone size

• Pre-publish your new key
 - Introduce new key, unused
 - Retire old key, use new key
 - Remove old key
 - Drawback: Increased rollover duration
DNSSEC weaknesses

- Increased DNS response packet size
- Increased workload for the resolvers
- Hierarchical trust level
- Time synchronization
- Complex to implement and operate
 - OpenDNSSEC
The whole picture
Topics

• NLnet Labs
• DNS
• DNSSEC
• Recent events
Recent events

• The root is signed!
 - DS in the root:
 .bg, .br, .cat, .cz, .dk, .edu, .lk, .na, .org, .tm, .uk
 - Coming: .arpa, .fr, .nl, .se, ...

• http://www.youtube.com/watch?v=b9j-sfP9GUU
Recent events

• Trust anchor distribution is a pain
• Automatic updating of Trust Anchors (at the resolver)
 - RFC 5011
 - Regular polling of SEP keys
 - Introduces the REVOKED bit
 - Not meant for those who have a secure delegation
 - Autotrust: RFC 5011 implementation
Recent events

• Algorithm Rollover
 - RFC 5702 introduces RSASHA2
 - DNSSEC says that all RRsets need to be signed with each algorithm
 - DNSKEY may expire from the cache before its signatures do
Recent events

• Algorithm Rollover and Automatic Updating of Trust Anchors
 – We need to double sign (because of use of multiple algorithms)
 – We need to revoke
? • http://www.nl.netlabs.nl
• http://www.opendnssec.org
• http://blog.nominet.org.uk/tech/2010/05/24/436
• http://www.root-dnssec.org/